Magnetic field of single coils / Biot-Savart’s law

Related topics
Wire loop, Biot-Savart’s law, Hall effect, magnetic field, induction, magnetic flux density.

Principle
The magnetic field along the axis of wire loops and coils of different dimensions is measured with a teslameter (Hall probe). The relationship between the maximum field strength and the dimensions is investigated and a comparison is made between the measured and the theoretical effects of position.

Equipment
- Induction coil, 300 turns, d = 40 mm: 11006.01
- Induction coil, 300 turns, d = 32 mm: 11006.02
- Induction coil, 300 turns, d = 25 mm: 11006.03
- Induction coil, 200 turns, d = 40 mm: 11006.04
- Induction coil, 100 turns, d = 40 mm: 11006.05
- Induction coil, 150 turns, d = 25 mm: 11006.06
- Induction coil, 75 turns, d = 25 mm: 11006.07
- Conductors, circular, set: 06404.00
- Teslometer, digital: 13610.93
- Hall probe, axial: 13610.01
- Power supply, universal: 13500.93
- Distributor: 06024.00
- Meter scale, demo, l = 1000 mm: 03001.00
- Digital multimeter: 07134.00
- Barrel base -PASS-: 02006.55
- Support rod -PASS-, square, l = 250 mm: 02025.55

Right angle clamp -PASS-: 02040.55
G-clamp: 02014.00
Lab jack, 200 230 mm: 02074.01
Reducing plug 4 mm/2 mm socket, 2: 11620.27
Connecting cord, l = 500 mm, blue: 07361.04
Connecting cord, l = 500 mm, red: 07361.01

Tasks
1. To measure the magnetic flux density in the middle of various wire loops with the Hall probe and to investigate its dependence on the radius and number of turns.
2. To determine the magnetic field constant μ_0.
3. To measure the magnetic flux density along the axis of long coils and compare it with theoretical values.

Set-up and procedure
Set up the experiment as shown in Fig. 1. Operate the power supply as a constant current source, setting the voltage to 18 V and the current to the desired value.

Measure the magnetic field strength of the coils ($I = 1 \text{ A}$) along the z-axis with the Hall probe and plot the results on a graph. Make the measurements only at the centre of the circular conductors ($I = 5 \text{ A}$). To eliminate interference fields and asymmetry in the experimental set-up, switch on the power and measure the relative change in the field. Reverse the current and measure the change again. The result is given by the average of the measured values.

Fig.1: Experimental set-up for measuring a magnetic field.
Magnetic field of single coils / Biot-Savart’s law

Fig. 2: Drawing for the calculation of the magnetic field along the axis of a wire loop.

Theory and evaluation

From Maxwell’s equation

\[\oint_{S} \mathbf{H} \cdot d\mathbf{A} = \int_{S} \mathbf{D} \cdot d\mathbf{r} = \int_{\Gamma} \mathbf{J} \cdot d\mathbf{l} \]

\[(1) \]

where \(\mathbf{K} \) is a closed curve around area \(S \), \(\mathbf{H} \) is the magnetic field strength, \(I \) is the current flowing through area \(S \), and \(\mathbf{D} \) is the electric flux density, we obtain for direct currents \(\mathbf{D} = 0 \) the magnetic flux law:

\[\oint_{S} \mathbf{H} \cdot d\mathbf{A} = I \]

\[(2) \]

which, with the notations from Figs. 2, is written in the form of Biot-Savart’s law:

\[dH = \frac{I}{4\pi} \frac{d\mathbf{l} \times \mathbf{\hat{r}}}{\rho^3} \]

\[(3) \]

The vector \(d\mathbf{l} \) is perpendicular to, and \(S \) and \(d\mathbf{H} \) lie in the plane of the drawing, so that

\[dH = \frac{I}{4\pi} \frac{d\mathbf{l}}{\rho^2} \cdot \frac{d\mathbf{l}}{R^2 + z^2} \]

\[(4) \]

d\(\mathbf{H} \) can be resolved into a radial \(dH_r \) and an axial \(dH_z \) component.

The \(dH_z \) components have the same direction for all conductor elements \(d\mathbf{l} \) and the quantities are added; the \(dH_r \) components cancel one another out, in pairs.

Therefore,

\[H_r(z) = 0 \]

\[(5) \]

and

\[H(z) = H_r(z) = \frac{I}{2} \cdot \frac{R^2}{(R^2 + z^2)^{3/2}} \]

\[(6) \]

along the axis of the wire loop, while the magnetic flux density

\[B(z) = \frac{\mu_0 \cdot I}{2} \cdot \frac{R^2}{(R^2 + z^2)^{3/2}} \]

\[(7) \]

where \(\mu_0 = 1.2566 \times 10^6 \, \text{H/m} \) is the magnetic field constant.

If there is a small number of identical loops close together, the magnetic flux density is obtained by multiplying by the number of turns \(n \).

Fig. 3: Magnetic flux density at the centre of a coil with \(n \) turns, as a function of the number of turns (radius 6 cm, current 5 A).

1. At the centre of the loop \((z = 0)\) we obtain

\[B(0) = \frac{\mu_0 \cdot n \cdot I}{2R}. \]

Using the expression

\[B = A_1 \cdot R^{E_1} \]

and

\[B = A_2 \cdot R^{E_2} \]

the regression lines for the measured values in Figs. 3 and 4 give, for the number of turns, the following exponents \(E \) and standard errors:

\[E_1 = 0.96 \pm 0.04 \]

Fig. 4: Magnetic flux density at the centre of a single turn, as a function of the radius (current 5 A).
Magnetic field of single coils / Biot-Savart's law

Fig. 5: Magnetic flux density along the axis of a coil of length \(l = 162 \) mm, radius \(R = 16 \) mm and \(n = 300 \) turns; measured values (0) and theoretical curve (continuous line) in accordance with equation (9).

3. To calculate the magnetic flux density of a uniformly wound coil of length \(l \) and \(n \) turns, we multiply the magnetic flux density of one loop by the density of turns \(n/l \) and integrate over the coil length.

\[
B(z) = \frac{\mu_0 \cdot I \cdot n}{2l} \cdot \left(\frac{a}{\sqrt{R^2 + a^2}} - \frac{b}{\sqrt{R^2 + b^2}} \right),
\]

where

\[
a = z + \frac{l}{2} \quad \text{and} \quad b = z - \frac{l}{2}.
\]

The proportional relationship between magnetic flux density \(B \) and number of turns \(n \) at constant length and radius is shown in Fig. 6. The effect of the length of the coil at constant radius with the density of turns \(n/l \) also constant, is shown in Fig. 7.

Comparing the measured with the calculated values of the flux density at the centre of the coil,

\[
B(0) = \frac{\mu_0 \cdot I \cdot n}{2} \left(R^2 + \left(0.5l\right)^2 \right)^{-\frac{1}{2}}
\]

(9)

and, for the radius (see equation (8))

\[
E_z = -0.97 \pm 0.02.
\]

2. Using the measured values from Figs. 3 and 4, and equation (8), we obtain the following average value for the magnetic field constant:

\[
\mu_0 = (1.28 \pm 0.01) \times 10^{-6} \text{ H/m}
\]

Fig. 6: Curve of magnetic flux density (measured values) along the axis of coil of length \(l = 160 \) mm, radius \(R = 13 \) mm and number of turns \(n_1 = 75, n_2 = 150 \) and \(n_3 = 300 \).
1) Fill the table for given coils:

<table>
<thead>
<tr>
<th>n</th>
<th>l (mm)</th>
<th>R (mm)</th>
<th>B(0) (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>160</td>
<td>13</td>
<td>measured</td>
</tr>
<tr>
<td>150</td>
<td>160</td>
<td>13</td>
<td>calculated</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Draw B (measured values) - n curve for current 1A (remarks: see Fig.3)
2) Fill the table for given coils:

<table>
<thead>
<tr>
<th>n</th>
<th>1 (mm)</th>
<th>R (mm)</th>
<th>B(0) (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>160</td>
<td>13</td>
<td>measured</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>16</td>
<td>calculated</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>20</td>
<td>measured</td>
</tr>
</tbody>
</table>

Draw B (measured values) - R curve for current 1A (remarks: see Fig.4)
3) Find the magnetic field constant (μ_0) from equation (9) with different measured magnetic flux densities (min. 5 magnetic flux density values are needed for verification). Compare your results with theoretical value which is $\mu_0 = 1.2566 \times 10^{-6}$ H/m.
4) Draw the B-z curve of magnetic flux density (measured values) along the axis of coils that given below. (Remarks: See Fig. 6)

a)

<table>
<thead>
<tr>
<th>n</th>
<th>l (mm)</th>
<th>R (mm)</th>
<th>B(0) (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>160</td>
<td>13</td>
<td>measured</td>
</tr>
<tr>
<td>150</td>
<td>160</td>
<td>13</td>
<td>calculated</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z (mm)</th>
<th>B (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>n</th>
<th>l (mm)</th>
<th>R (mm)</th>
<th>B(0) (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>160</td>
<td>13</td>
<td>measured</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>16</td>
<td>calculated</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z (mm)</th>
<th>B (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7
5) **Results and Discussion:** Fill the table given below and discuss the results.

<table>
<thead>
<tr>
<th>n</th>
<th>l (mm)</th>
<th>R (mm)</th>
<th>B(0) (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>160</td>
<td>13</td>
<td>measured</td>
</tr>
<tr>
<td>150</td>
<td>160</td>
<td>13</td>
<td>calculated</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>53</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>105</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>